

| ID<br>Poste<br>r | Name     | Surname            | Title                                                                                                                                              | Topic            |
|------------------|----------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 1                | Gaia     | Amato              | Developing Human Organoids To Model<br>Genetic And Systemic Conditions During<br>Congenital Anomalies Of The Kidney And<br>Urinary Tract           | Cell Engineering |
| 2                | Chiara   | Ninfali            | Duchenne Muscular Dystrophy fibro-<br>adipogenic progenitors impair muscle<br>function of co-cultured healthy myotubes<br>in a functional 3D model | Cell Engineering |
| 3                | Karolina | Zimkowska          | Monitoring Neuronal Activity in Human<br>Cortical Organoids with Frontotemporal<br>Lobar Degeneration-Tau (FTLD-Tau)                               | Cell Engineering |
| 4                | Gulsun   | Bagci              | Cell-Derived Extracellular Matrices for 3D Breast Cancer Models                                                                                    | Cell Engineering |
| 5                | Ainhoa   | Ferret Miñana      | 3D bioengineered liver for the study of acute and chronic hepatic damage                                                                           | Cell Engineering |
| 6                | Julia    | Fabà-Costa         | Development of an ex utero embryo culture platform to address post-implantation development and early placentation                                 | Cell Engineering |
| 7                | Victoria | Batto              | Identifying Clinically Relevant Biomarkers in NSCLC through Collagen Fragment Analysis                                                             | Cell Engineering |
| 8                | Dakota   | Coloroso           | Development of a 3D Organoid-on-a-Chip<br>Device for Human Spinal Cord Models                                                                      | Cell Engineering |
| 9                | Armando  | Cortés<br>Reséndiz | Decoding skeletal muscle-liver axis in the context of sarcopenia: Towards the multi organ on a chip                                                | Cell Engineering |



| 10 | David    | Bartolomé-<br>Català  | Designing in vitro platforms to study transendothelial T cell migration in colorectal cancer                                                           | Cell Engineering |
|----|----------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 11 | Xiomara  | Fernández<br>Garibay  | Advancing Preclinical Research of<br>Myotonic Dystrophy Type 1 with 3D<br>Functional Human Skeletal Muscle<br>Tissues                                  | Cell Engineering |
| 12 | Judith   | Fuentes<br>Llanos     | Real-Time Force Monitoring of Electrically<br>Stimulated 3D Bioengineered Muscle<br>Bioactuators Using Organic Sensors with<br>Tunable Sensitivity     | Cell Engineering |
| 13 | Steffen  | Grosser               | Optogenetic control of collective dynamics in epithelial cells                                                                                         | Cell Engineering |
| 14 | Inés     | Martínez Soria        | Roles of the Adhesion G Protein-Coupled<br>Receptor D1 (ADGRD1) during CNS<br>development and adult neuronal<br>plasticity                             | Cell Engineering |
| 15 | Dayaneth | Jácome                | Targeting PrPC signaling involved in glioblastoma by miR-519a-3p as therapeutic intervention                                                           | Cell Engineering |
| 16 | Sheeza   | Mughal                | Transient Metabolic Adaptation and weakness in healthy 3-D in vitro skeletal muscle tissues exposed to Chronic Fatigue Syndrome and Long COVID-19 sera | Cell Engineering |
| 17 | Adrià    | Noguera<br>Monteagudo | Advanced Microfluidic Platform For 3d Angiogenesis Studies                                                                                             | Cell Engineering |
| 18 | Marc     | Riu Villanueva        | Viral expression of tau with the P301L mutation induces tauopathy hallmarks on pluripotent stem cell-derived neuronal cultures                         | Cell Engineering |



| 19 | Gisele<br>Priscila | Soares de<br>Aguiar | Harnessing Spinal Cord ECM Cues to<br>Enhance iPSC-Derived Neuronal<br>Maturation and Regeneration                                               | Cell Engineering |
|----|--------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 20 | Aleixandre         | Rodrigo<br>Navarro  | Optogenetic gene expression control in Lactococcus lactis                                                                                        | Cell Engineering |
| 21 | Gustavo            | San Miguel          | Production of Polyhydroxybutyrate (PHB) by Bacillus cereus 12GS for applications in regenerative therapies                                       | Cell Engineering |
| 22 | Anisha             | Pahuja              | Exploiting human pluripotent stem cells to study human disease in kidney and retina                                                              | Cell Engineering |
| 23 | Gal·la             | Vinyes i<br>Bassols | Bioprinting 3D human neurovascular unit: a high-throughput in vitro platform for neurodegenerative diseases modeling and drug screening          | Cell Engineering |
| 24 | Anna               | Vilche              | Advanced Microphysiological Device for Simulating Traumatic Brain Injury                                                                         | Cell Engineering |
| 25 | Gergo              | Matajsz             | RF Surface Coil Design for High-<br>Throughput Metabolic Imaging using<br>Microfluidics                                                          | ICT for Health   |
| 26 | Tecla              | Duran               | Blind source separation techniques for peak separation in gas chromatographyion mobility spectrometry data using tensorial decomposition methods | ICT for Health   |
| 27 | Luis               | Fernández<br>Romero | Application of Multiblock Techniques to<br>Metabolomic and Clinical Data for<br>Predicting Ventilatory Therapies in<br>COVID-19 Patients         | ICT for Health   |
| 28 | Rishabh            | Garg                | Thread-Based DNA Extraction and Purification with Carbon Dot Fe3+ based DNA Biosensor                                                            | ICT for Health   |



| 29 | Yolanda  | Castillo<br>Escario  | Measuring High-Resolution Sleep Position and its Variability in Adolescents with Smartphone Accelerometers             | ICT for Health     |
|----|----------|----------------------|------------------------------------------------------------------------------------------------------------------------|--------------------|
| 30 | Eva      | Martin               | Evaluating the Impact of Respiratory<br>Effort on ICU Survival                                                         | ICT for Health     |
| 31 | Adriana  | González             | Real time biomarker determination of muscular dystrophy type 1                                                         | ICT for Health     |
| 32 | Consuelo | Guardiola            | Novel detectors for advanced radiotherapy at IMB-CNM                                                                   | ICT for Health     |
| 33 | Gema     | Guedes de la<br>Cruz | Searching for a rapid tool to identify high quality microbiota donations for specific faecal microbiota transplants    | ICT for Health     |
| 34 | Manuel   | Lozano García        | Respiratory Sound Intensity as a<br>Noninvasive Acoustic Biomarker in COPD                                             | ICT for Health     |
| 35 | Martín   | Ruiz Gutiérrez       | Integrated Organ-on-Chip Platform with PINP Plasmonic Biosensor for Fibrosis Monitoring in Duchenne Muscular Dystrophy | ICT for Health     |
| 36 | Daniel   | Romero Perez         | Multivariable Regression Model to<br>Estimate Tidal Volume for Different<br>Respiratory Patterns                       | ICT for Health     |
| 37 | David    | Gomez-<br>Cabeza     | Parallel Metabolic Imaging Using MRI and Microfluidics for Personalised Medicine                                       | ICT for Health     |
| 38 | Mamatha  | Nijaguna             | Inhibiting mechanotransduction as a novel approach for oncology therapy                                                | Mechanobiolog<br>y |



| 39 | Pau       | Guillamat                 | Guidance of cellular nematics into self-<br>shaping active surfaces                              | Mechanobiolog<br>y |
|----|-----------|---------------------------|--------------------------------------------------------------------------------------------------|--------------------|
| 40 | Annalisa  | Calò                      | Mechanical phenotyping of lung cancer CAFs                                                       | Mechanobiolog<br>y |
| 41 | Clément   | Hallopeau                 | Mechanisms of mechanical compartmentalisation in intestinal organoids                            | Mechanobiolog<br>y |
| 42 | Guillermo | Martínez Ara              | An optogenetic toolset to understand and control epithelial mechanical balance                   | Mechanobiolog<br>y |
| 43 | Aina      | Albajar Sigalés           | Studying the mechanical regulation of nucleocytoplasmic transport using Single Molecule Tracking | Mechanobiolog<br>y |
| 44 | Miguel    | González<br>Martín        | Designing mechanosensible molecules for the mechanical control of cellular transcription.        | Mechanobiolog<br>y |
| 45 | Mariana   | Azevedo<br>Gonzalez Oliva | Piezo1 is a mechanosensor of matrix viscoelasticity                                              | Mechanobiolog<br>y |
| 46 | Ona       | Baguer<br>Colomer         | Role of nuclear mechanics in the regulation of EMT in pancreatic cancer cells                    | Mechanobiolog<br>y |
| 47 | Giuseppe  | Ciccone                   | Matrix viscoelasticity controls epithelial cell mechanobiology through dimensionality            | Mechanobiolog<br>y |
| 48 | Miquel    | Bosch                     | Force transmission in embryonic-like epithelia                                                   | Mechanobiolog<br>y |



| 49 | Zarina            | Nauryzgaliyev<br>a   | Dissecting early nephron patterning and segmentation in kidney organoids derived from hPSCs                                                        | Mechanobiolog<br>y |
|----|-------------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| 50 | Isabela<br>Corina | Fortunato            | Following and unfollowing haptotatic gradients                                                                                                     | Mechanobiolog<br>y |
| 51 | Margherita        | Gallano              | Nuclear Envelope Remodeling and<br>Mechanosensing Mechanisms under<br>Stretch                                                                      | Mechanobiolog<br>y |
| 52 | Laura             | Faure                | 3D micropatterned traction force microscopy: a technique to control three-dimensional cell shape while measuring cell-substrate force transmission | Mechanobiolog<br>y |
| 53 | Jorge             | Oliver-De La<br>Cruz | Substrate Stiffness Regulates Tau Nuclear Localization In Neurons                                                                                  | Mechanobiolog<br>y |
| 54 | Özge              | Özgüç                | A bottom-up model to study biomechanics of human amniotic sac development                                                                          | Mechanobiolog<br>y |
| 55 | Alice             | Perucca              | Understanding the mechanobiology of immune infiltration in colon cancer.                                                                           | Mechanobiolog<br>y |
| 56 | Marc              | Rico-Pasto           | Circulation-on-a-Chip: Cell Survival Under<br>Pro-Apoptotic Mechanical Cues in<br>Metastasis                                                       | Mechanobiolog<br>y |
| 57 | Janet             | van der Graaf<br>Mas | Experimental model of the mechanobiology of the immunocompetent tumor ecosystem                                                                    | Mechanobiolog<br>y |
| 58 | Thomas            | Wilson               | Unveiling the 3D Mechanics of Tubular Epithelial Structures for Biohybrid Devices                                                                  | Mechanobiolog<br>y |



| 59 | Shuqin             | Chen               | Convective Dynamics of Swarming Enzymatic Nanomotors                                                                                                    | Nanomedicine |
|----|--------------------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| 60 | Núria              | Blanco-Cabra       | Novel Fluidic System With Controlled<br>Share Stress For Personalized Diagnostic<br>In Biofilm-Related Infections                                       | Nanomedicine |
| 61 | Luisa              | Camerin            | Photoswitchable Carbamazepine Analogs for Non-Invasive Neuroinhibition In Vivo                                                                          | Nanomedicine |
| 62 | Marta              | Badia              | A comprehensive landscape of IAPP amyloid aggregation                                                                                                   | Nanomedicine |
| 63 | Júlia              | Alcàcer<br>Almansa | Exploring host-pathogen interactions: Unraveling the dynamics of Pseudomonas aeruginosa and Burkholderia cenocepacia coinfection in Galleria mellonella | Nanomedicine |
| 64 | Cátia              | D. F. Lopes        | Precision nanomedicine-enabled CRISPR-<br>powered gene therapy for efficient<br>amyloid-ß clearance across the blood-<br>brain barrier                  | Nanomedicine |
| 65 | Antonino<br>Nicolò | Fallica            | Development of YAT2150 analogues as potent multistage antiplasmodial agents                                                                             | Nanomedicine |
| 66 | Nina               | Kostina            | Harnessing nature's blueprints to design interactive synthetic cells                                                                                    | Nanomedicine |
| 67 | Joana              | Admella<br>Pedrico | Studying Pseudomonas aeruginosa and Staphylococcus aureus infection in alveolar epithelial cells                                                        | Nanomedicine |



| 68 | Claudia     | Camarero            | Discovery of a novel irresistible antimalarial drug with multiple targets altering P. falciparum protein homeostasis.                                    | Nanomedicine |
|----|-------------|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| 69 | Valentino   | Barbieri            | The effect of ligand surface distribution on the phenotypic targeting of brain endothelial cells                                                         | Nanomedicine |
| 70 | Marco       | Basile              | On the Amyloid- $\beta$ transcytosis across the blood-brain barrier                                                                                      | Nanomedicine |
| 71 | Barbara     | Borges<br>Fernandes | Chemotaxis of natural and synthetic vesicles                                                                                                             | Nanomedicine |
| 72 | Claudia     | Codano              | A fumarate-based nanomedicine for macrophages' phenotypic modulation                                                                                     | Nanomedicine |
| 73 | Mauricio    | Cano                | Nanoscale dielectric imaging through deep convolutional neural networks                                                                                  | Nanomedicine |
| 74 | Dario       | Castellana          | Radioprotective effects of Amifostine loaded in PLGA nanocarriers on 3D oral cancer models upon X-ray irradiation                                        | Nanomedicine |
| 75 | Nisha Pawar | Chauhan             | Liquid Phase Transmission Electron<br>Microscopy to understand Structure and<br>Protein Aggregation                                                      | Nanomedicine |
| 76 | David       | Esporrín<br>Ubieto  | Tuning organic nanogels for a new generation of smart nanomotors                                                                                         | Nanomedicine |
| 77 | Jiangqi     | Feng                | Polymersomes Regulating Immune<br>Microenvironment Reduces Inflammation<br>and Alleviates Idiopathic Pulmonary<br>Fibrosis (IPF) by Phenotypic Targeting | Nanomedicine |



| 78 | Kristin | Fichna             | Urease-powered nanomotors based on mesoporous silica for chemotherapeutic bladder cancer therapy                                | Nanomedicine |
|----|---------|--------------------|---------------------------------------------------------------------------------------------------------------------------------|--------------|
| 79 | Ines    | Macías Tarrío      | Drug-loaded PLGA nanomotors as a new approach for bladder cancer therapy                                                        | Nanomedicine |
| 80 | Ainhoa  | González           | Enzyme-Powered Nanobots for Enhanced siRNA Delivery in Bladder Cancer Therapy                                                   | Nanomedicine |
| 81 | María   | López Carpio       | Boosting urease nanomotors efficiency: purity, stability and motion                                                             | Nanomedicine |
| 82 | Silvia  | Gómez              | Synergistic Antimicrobial Effects through<br>Ion Implantation in Boston<br>Keratoprosthesis                                     | Nanomedicine |
| 83 | Nicola  | Manicardi          | In vitro modeling of blood-brain barrier breakdown in amyloid-beta induced inflammation                                         | Nanomedicine |
| 84 | Ángela  | Martínez<br>Mateos | Discovery of novel transcriptional regulators involved in the regulation of ribonucleotide reductases in Pseudomonas aeruginosa | Nanomedicine |
| 85 | Víctor  | Mejías Pérez       | Deciphering the Metabolite Code: Peptide-Guided Delivery to Antigen- Presenting Cells                                           | Nanomedicine |
| 86 | Jose    | Muñoz-López        | On the design of precision nanomedicines with dual phenotypical targeting                                                       | Nanomedicine |
| 87 | Anna    | Panteleeva         | Advancing Neurodegenerative Disease<br>Research with Enhanced Brain-on-a-Chip<br>Technology and Integrated Biosensor<br>Systems | Nanomedicine |



| 88 | Carles       | Prado        | Exploring the Movement of Enzymatic-<br>PLGA Nanobots in Human Skin Models                                                  | Nanomedicine |
|----|--------------|--------------|-----------------------------------------------------------------------------------------------------------------------------|--------------|
| 89 | Romain       | Pastre       | Combinatorial mutagenesis to investigate gain of function pathogenic variants in amyloid beta                               | Nanomedicine |
| 90 | Marina       | Placci       | Glucosylceramide enrichedment affects membrane nanomechanics in lipidosis                                                   | Nanomedicine |
| 91 | Giulia Maria | Porro        | Characterizing the modulation of the expression level of LRP1 protein in Alzheimer's Disease                                | Nanomedicine |
| 92 | Carla        | París Marcet | Self-communication of a hemin-based thermoresponsive nanomotor with an on off bubble propulsion                             | Nanomedicine |
| 93 | Eduard       | Torrents     | Antimicrobial and antibiofilm activity of human recombinant H1 histones against bacterial infections                        | Nanomedicine |
| 94 | Tomás        | Quiroga      | Deep mutational scanning of SOD1 to comprehensively map the impact of mutations on protein stability                        | Nanomedicine |
| 95 | Lucia        | Roman Alamo  | Development of DNA aptamers against<br>Leishmania infantum GP63 protein                                                     | Nanomedicine |
| 96 | Alessandro   | Ronzoni      | Dimer Or Monomer? Trying To Unravel<br>The Structural Characteristics Of Lrp1<br>Protein                                    | Nanomedicine |
| 97 | Zahra        | Saeidikia    | Combining Liquid Phase TEM and<br>Molecular Simulations to study Misfolded<br>Protein Aggregation in Alzheimer's<br>Disease | Nanomedicine |



| 98  | Daniel            | Sánchez de<br>Alcázar<br>Melendo | Enhancing nanomotor stability: the role of enzymatic protection                                                                                               | Nanomedicine |
|-----|-------------------|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| 99  | Valentina         | Schastlivaia                     | Incorporating Physics-informed Neural Networks into a Physiologically Based Pharmacokinetic Model for functionalized nanoparticles biodistribution prediction | Nanomedicine |
| 100 | Gema              | Quiñonero<br>López               | Nanotechnology-driven hyperthermia in bioengineered neuroblastoma models                                                                                      | Nanomedicine |
| 101 | Renato<br>Eduardo | Yanac Huertas                    | Simulation-Guided Fabrication of Photo<br>Printed Scaffolds for Improved Cardiac<br>Cell Alignment in Microfluidic<br>Environments                            | Nanomedicine |
| 102 | Maria Jose        | Ugarte                           | Plasmonic Biosensors to evaluate complement activation in serum of patients with myasthenia gravis                                                            | Nanomedicine |
| 103 | Akhil             | Venugopal                        | Engineering Dynamic Lipid Vesicles with Programmable Lifetime for Controlled Cargo Release                                                                    | Nanomedicine |
| 104 | Marco             | Vigo                             | New anti-ICAM-1 antibodies for drug delivery applications                                                                                                     | Nanomedicine |
| 105 | Zhendong          | Xie                              | Multiscale physiologically-based pharmacokinetics modeling                                                                                                    | Nanomedicine |
| 106 | Gian Marco        | Tuveri                           | Computational study of the Low-density lipoprotein receptor-related protein 1 (LRP1) structure and dynamics                                                   | Nanomedicine |



| 107 | Technology<br>Transfer and<br>Business<br>Developmen<br>t Office | IBEC | Technology Transfer and Business Development Office at IBEC                                                           | Transversal<br>Initiatives |
|-----|------------------------------------------------------------------|------|-----------------------------------------------------------------------------------------------------------------------|----------------------------|
| 108 | Gender and diversity Committee                                   |      | Promoting Gender Equality, Diversity, and Inclusion at IBEC: Goals and Actions of the Gender and Diversity Commission | Transversal<br>Initiatives |
| 109 | IBEC<br>Sustainabilit<br>y Committee                             |      | Ibec Sustainability Commiteee: Promoting Sustainability In Research                                                   | Transversal<br>Initiatives |
| 110 | Core<br>Facilities                                               |      | MicrofabSpace and Microscopy<br>Characterization Facilities: Empowering<br>Research with New Technologies at IBEC     | Transversal<br>Initiatives |
| 111 | Core<br>Facilities                                               |      | MicrofabSpace and Microscopy<br>Characterization Facilities: Empowering<br>Research with New Technologies at IBEC     | Transversal<br>Initiatives |